
Data Science – Spring 2020 (KGDASCG1KU)

1

Abstract—In this paper I iterate on the work done by Mureșan,

H., & Oltean, M. (2018) on the Fruit-360 dataset available at

https://www.kaggle.com/moltean/fruits to create a classifier of

fruit and vegetables using convolutional neural networks. My

project introduces improvements on the models proposed by the

authors by trying new tunings of the parameters and by adding

dropout layers between the fully connected layers of the Neural

Network. I also train a model starting from the pre-trained

model based on MobileNet V2. The results of the classifiers are

then compared to the ones of the original paper and to a model

based on logistic regression.

I. INTRODUCTION

A. The Dataset

HE dataset used in this project is called Fruit-360 and can

be downloaded from www.kaggle.com/moltean/fruits.

Currently, the dataset contains 90483 images of 131

different fruits and vegetables. At the time of writing

Mureșan, H., & Oltean, M. (2018), only 82213 images of 120

fruits and vegetables were available. The authors invite the

reader to access the latest version of the dataset from the

address indicated above.

The images were obtained by filming fruits and vegetables

while they were being rotated by a motor and by extracting the

frames afterwards. A white sheet of paper was placed behind

the fruits as background. Further work has been put to make

sure the background was independent of the lighting

conditions. Finally, fruits were scaled to fit a 100x100 pixels

image. Each image contains one and only one fruit.

The dataset is already split between a training set (67692

images) and a test set (22688 images). The folder structure is

the following:

• Images

o Training

▪ Apple Braeburn

▪ Apple Crimson Snow

▪ …

▪ Watermelon

o Test

▪ Apple Braeburn

▪ Apple Crimson Snow

▪ …

▪ Watermelon

•

B. Motivation and Applications

I chose this dataset because I was interested in applying what I

studied about Deep Learning to a real-life scenario starting

from good quality data so that I could focus on the

implementation, tuning and training of the machine learning

models. Specifically, I wanted to work on Convolutional

Neural Networks (CNNs) as they currently are the state-of-

the-art classes of algorithms for image classification and

detection. I also wanted to experiment with transfer learning,

so I decided to train a network from scratch and compare it to

a network that I could train from a pre-trained lightweight

model such as MobileNet V2. I chose MobileNet V2 for its

small size yet good performance, as I wanted my models to be

small enough to work on mobile devices. Lastly, I decided to

work on this dataset because, by reading Mureșan, H., &

Oltean, M. (2018), I realized that the authors did not use

certain techniques in their model architecture that are

recognized as useful to improve generalization, so I wanted to

see if, by introducing them, there would be improvements in

the performance of the classifiers. Specifically, I’m referring

to adding Dropout layers between each couple of consecutive

fully connected layers.

My work may be applied across multiple domains. For

example, the trained models could be inserted into a portable

device to be used by visually impaired people to get help to

recognize between different fruits and vegetables. It may also

be applied to autonomous fruit harvesting in greenhouses or to

the identification of out of place items in the aisles of stores.

II. THEORY

In this section I will briefly explain the key aspects of the

theory used to support my project. For the sake of brevity, I

will try to focus on the aspects of deep learning that are related

to CNNs and image classification.

A. Convolutional Neural Networks

Convolutional Neural Networks are a specialized kind of

neural network for processing data with a grid-like topology

(Goodfellow, Bengio, & Courville, A. (2016)). The most

common applications of CNNs are image classification and

detection. Typical CNN architectures consist of the following:

• Sequence of Convolutional Layers (with ReLU as the

activation function) and Pooling Layers alternated

one after the other.

• Flatten Layer: it converts the dimensionality of the

input data from 2D to 1D.

• Sequence of Fully Connected Layers.

Compared to fully connected NNs, CNNs take knowledge on

the topology of the data into consideration, therefor improving

the training performance.

1) Convolutional Layer

Convolutional Layers are named after the convolution

operation. A convolutional layer consists of groups of neurons

Iteration on the Fruit-360 Dataset

Francesco Frassineti fraf@itu.dk

T

https://www.kaggle.com/moltean/fruits
http://www.kaggle.com/moltean/fruits
mailto:fraf@itu.dk

Data Science – Spring 2020 (KGDASCG1KU)

2

that make up kernels. The kernels have a small size and they

slide across the width and height of the input, extract high

level features and produce a 2-dimensional activation map to

be used as the input of the following layer.

Figure 1: Example of the Convolution between an image and a 3x3

Kernel. Image from Frassineti (2017).

2) Pooling Layers

Pooling layers are used to:

1. Reduce the spatial dimensions of the representation

2. Reduce the amount of computation done in the

network

3. Control overfitting

A typical pooling operation in CNNs is MaxPooling: given a

neighborhood of values in a feature map, the result of this

calculation is their maximum value.

Figure 2: Example of MaxPooling operation. Image from

https://computersciencewiki.org/index.php/Max-pooling_/_Pooling

3) Flatten Layer

Converts the output of the convolutional part of the CNN from

a 2D to 1D representation so that it can be fed to the fully

connected part.

4) Fully Connected Layers

Each neuron from a fully connected layer is linked to each

output of the previous layer.

B. Rectified Linear Unit (ReLU)

The Rectified Linear Unit is an activation function defined as

𝑓(𝑥) = 𝑥+ = max⁡(0, 𝑥). Compared to sigmoid and other

activation functions, ReLU is demonstrated to enable better

training of deep neural networks (Glorot, Bordes, & Bengio

(2011)) and it’s the activation function of choice for the

hidden layers of CNNs.

C. Dropout

Machine learning models suffer from overfitting when they

achieve good classification results on the training set, but the

model doesn’t generalize well on the test set.

Overfitting is a very common problem when training a

classifier and Srivastava, Hinton, Krizhevsky, Sutskever, &

Salakhutdinov(2014) proposed Dropout as a possible way to

reduce it. It’s a method that has been proven to greatly

improve the property of generalization in NN-based models.

Dropout is a regularization method that approximates training

a large number of neural networks with different architectures

in parallel. During training, some number of layer outputs are

randomly ignored or “dropped out.” This has the effect of

making the layer look-like and be treated-like a layer with a

different number of nodes and connectivity to the prior layer.

In effect, each update to a layer during training is performed

with a different “view” of the configured layer. Dropout has

the effect of making the training process noisy, forcing nodes

within a layer to probabilistically take on more or less

responsibility for the inputs.

This conceptualization suggests that perhaps dropout breaks-

up situations where network layers co-adapt to correct

mistakes from prior layers, in turn making the model more

robust. As a rule of thumb, when introducing dropout to the

network, it’s suggested to double the number of neurons in the

layer and use a dropout-rate of 0.5 for hidden layers and 0.8

for input layers.

Figure 3: Dropout. From Srivastava, Hinton, Krizhevsky, Sutskever,

& Salakhutdinov(2014).

III. THE METHOD

In this section I write about the python implementation of the

3 different types of classifier that have been trained with

Keras:

• The CNNs trained from scratch, referred as type A

• The CNNs trained from MobileNet V2, referred as

type B

• The Logistic Regression model, referred as type C

I will use the python code I wrote as a reference, but I will not

quote it so not to decrease readability. The boilerplate for the 3

types of classifier is almost the same, so I discuss it step by

step and I point out the specific differences when necessary.

A. Libraries

These are the required libraries to run the project:

• Numpy: package for scientific computing with

Python.

• Tensorflow: the end-to-end open source machine

learning platform by Google.

• Keras: open-source neural-network library that

allows developers to write deep learning model

architectures at a higher level compared to

Tensorflow.

• Matplotlib.pyplot: library for plots and charts.

• Datetime: library to handle dates and time.

• Os: library to do operations at level of the operative

system.

B. Preprocessing: Data Augmentation and Normalization

In order to improve the quality and the quantity of the data, the

images flowing from the training and testing directory went

through the following steps:

Data Science – Spring 2020 (KGDASCG1KU)

3

• Normalization: in the ImageDataGenerator

constructors, the rescale parameter has been set to

1./255, therefor rescaling every value of every color

channel from [0; 255] to [0;1]. This is meant to

improve the quality of the stochastic gradient

descent.

• Augmentation: in the ImageDataGenerator of the

training (and validation) set, the following parameters

have been specified:

o Shear_range=0.1: add random shear to the

training example

o Zoom_range=0.1: add random zoom

o Horizontal_flip=True: flip the image

horizontally with a probability of 50%.

The last step of the preprocessing consisted in splitting the

training set into the actual training set (80% of the training

images) and a validation set (20%) to be used to get an

estimate of the performance of the classifiers during training.

The output of the preprocessing step consists in the following

3 types of batches (batch_size=50):

• Train_batches

• Validation_batches

• Test_batches

C. Definition of the Model Architecture

1) CNN trained from Scratch (Model A)

Model A is a sequential model where each convolutional layer

has kernel_size=3x3 and uses valid padding (no padding).

Each MaxPooling layer has stride=2 and pool_size=(2x2)

therefor decreasing the image size by 4 times. The chosen

activation function for every neuron in a hidden layer is the

Rectified Linear Unit (ReLU), while for the output layer it’s

‘softmax’ as we are training a multiclass classifier. Now let’s

focus on the actual topology of the network:

• Conv2D Layer (16 output features)

• MaxPooling2D

• Conv2D Layer (32 output features)

• MaxPooling2D

• Conv2D Layer (64 output features)

• MaxPooling2D

• Conv2D Layer (128 output features)

• MaxPooling2D

• Conv2D Layer (256 output features)

• Flatten Layer

• Dense Layer (2048 neurons)

• Dropout Layer (dropout_rate=0.5)

• Dense Layer (512 neurons)

• Dropout Layer (dropout_rate=0.5)

• Dense Layer (131 output neurons)

Resulting Model Size: 42.361 MB

Number of Parameters: 3608099

2) CNN trained from MobileNet V2 (Model B)

Model B starts from MobileNet V2, a pretrained model

included in tensorflow.keras.applications. The model is loaded

with the following parameters: input_shape=(100, 100, 3) so

that it matches the size of the images in the Fruit-360 dataset.

The starting weights are the ones calculated by training on the

‘imagenet’ dataset. The model is specified to perform max

pooling as the preferred type of pooling.

Lastly, include_top is set to False so that the pre-trained

output layer is replaced by new custom layers to allow the

prediction of the 131 classes of fruits and vegetables. These

are the layers that are added to the pre-trained model:

• Dense Layer (2048 neurons, ReLU)

• Dropout (dropout_rate=0.5)

• Dense Layer (131 output neurons, softmax)

Resulting Model Size: 60.929 MB

Number of Parameters: 5149891

3) Logistic Regression (Model C)

Model C is a model based on logistic regression to be

compared to models of type A and B. The Keras model is the

following:

• Flatten layer

• Dense layer (131 output layers, softmax)

Resulting Model Size: 46.074 MB

Number of Parameters: 3939131

D. Model Compilation

The models are compiled by using an Adam Optimizer with

default parameters and variable learning_rate. An Adam

Optimizer performs Stochastic Gradient Descent with a

learning rate that progressively decreases for each iteration.

Since multi-class classification is the goal, the loss function of

choice is categorical_crossentropy. The model is compiled to

evaluate both loss and accuracy as metrics.

E. Model Training

Before starting the actual training, 2 callbacks to be triggered

at the end of each training epoque are defined:

• EarlyStopping: this callback stops training when the

chosen performance measure (validation accuracy)

stops improving. Because of the EarlyStopping

callback, I can specify a large amount of training

epochs and, by setting patience=25, I can expect the

model to stop training in a reasonable time after the

network stops improving.

• ModelCheckpoint: this callback is responsible to save

the model with the best validation accuracy at the

end of each epoque.

Once the two callbacks are ready, I start the training session

on a GeForce GTX 1060 by feeding them to the fit function

together with x=training_batches,

validation_data=validation_batches.

The history of the training is memorized in the history variable

and the time elapsed between the start and the end of the

training is memorized in the time_delta variable.

After the training, the last iteration of the classifier and the one

with the best validation accuracy can be found in the

models/<type>/<date_time> folder. On top of that, a text file

with the summary of the model architecture, its hyper-

parameters and training information is saved in the same

folder.

Hyper-parameters include:

• Learning Rate

Data Science – Spring 2020 (KGDASCG1KU)

4

• Dropout Rate

• Batch Size

Training information includes:

• Time Train Start

• Time Train End

• Time Train Delta

• Train Accuracy

Lastly, the following two charts are saved:

• Loss history (train and validation)

• Accuracy history (train and validation)

F. Evaluation of the Classifier

After the training, the model with the best validation accuracy

is loaded and its accuracy is evaluated against the test set. The

evaluated metric is then appended to the previously mentioned

summary file.

IV. NUMERICAL EXPERIMENTS AND RESULTS

A. Previous Work

Before writing about the actual results, let’s briefly introduce

the models from Mureșan, H., & Oltean, M. (2018). They all

are CNNs with a kernel size of 5x5. In order to differentiate

them from the models trained in the current project, I will

name them Z1, Z7 and Z2 respectively. The numbers are taken

from the “Nr.” column in Table 4 of pag.23 of Mureșan, H.,

& Oltean, M. (2018).

Model Configuration

Z1 Convolutional 5 x 5 16

Convolutional 5 x 5 32

Convolutional 5 x 5 64

Convolutional 5 x 5 128

Fully Connected - 1024

Fully Connected - 256

Z7 Convolutional 5 x 5 16

Convolutional 5 x 5 32

Convolutional 5 x 5 128

Convolutional 5 x 5 128

Fully Connected - 1024

Fully Connected - 256

Z2 Convolutional 5 x 5 8

Convolutional 5 x 5 32

Convolutional 5 x 5 64

Convolutional 5 x 5 128

Fully Connected - 1024

Fully Connected - 256
Table 1: Top-3 models from Mureșan, H., & Oltean, M. (2018).

B. Results

In order to try to achieve the best test accuracy, models were

trained by experimenting with different hyper-parameters.

Specifically, models were trained with different learning rates.

Table 1 shows the results of training models of type A (CNN

with Dropout), B (pre-trained CNN from MobileNet V2 with

Dropout) and C (Logistic Regression). The results are

compared with the 3 best classifiers (Z1, Z7 and Z2) from

Mureșan, H., & Oltean, M. (2018).

Model Learnin

g Rate

Train

Accuracy

Test

Accuracy

Train

Time (s)

A1 5e-4 99.89% 94.87% 7823.95

A2 3e-4 99.919% 96.756% 6269.54

A3 1e-4 99.942% 95.363% 5594.06

A4 5e-5 99.9963% 96.93% 7753.23

A5 1e-5 99.9982% 96.55% 11580.2

B1 1e-3 99.56% 96.28% 10462

B2 1e-4 99.878% 98.572% 11994.77

B3 3e-5 100% 98.766% 8885.65

C1 5e-2 97.07% 88.11% 10961.2

Z1 - 99.58% 95.23% -

Z7 - 99.55% 95.09% -

Z2 - 99.68% 95.02% -

Table 2:results of the training sessions of the different types of

classifiers and different learning rates compared with each other and

with the previous work by Mureșan, H., & Oltean, M. (2018).

By choosing appropriate learning rates, the CNNs with

dropout layers tend to perform slightly better compared to the

ones without them by Mureșan, H., & Oltean, M. (2018).

There is still some overfitting, as the train accuracies tend to

100% while the test accuracies never reach 97% with type A.

As expected, the lower the learning rate, the less overshooting

is performed during gradient descent, making the training loss

more stable and improving generalization. For models A1-4

and B1-2 the learning rates are too high and that causes the

validation loss to increase over time as a sign of overfitting.

The model that suffers most from overfitting is C1, the one

based on logistic regression: while the model acceptably fits

the training data (training accuracy is 97%), the model highly

suffers of overfitting as the test accuracy is barely 88.11%.

This was expected, as logistic regression models are

conceptually very simple:

1. There is only one output layer fully connected to the

input layer without any hidden layer, thus decreasing

the abstraction capabilities of the model.

2. It does not exploit the grid-like structure of the input

data.

That’s why model C1 performed much worse compared to

models of type A even if they all had comparable parameter

numbers.

B1 has a good performance that is comparable with the one of

models of type A. By looking at its loss and accuracy history

(table 3), though, it is clear that a better model can be

achieved by trying a lower learning rate. By choosing a

learning rate=1e-4, we obtain model B2. By looking at its

loss and accuracy history, it can be observed that the learning

rate can be lowered further (e.g.: to 3e-5). The resulting model

B3 achieves the best classification performance out of all the

considered models with a test accuracy of 98.766%.

 Learnin

g Rate
Loss History Accuracy History

A

1

5e-4

Data Science – Spring 2020 (KGDASCG1KU)

5

A

2

3e-4

A

3

1e-4

A

4

5e-5

A

5

1e-5

B1 1e-3

B2 1e-4

B3 3e-5

C1 5e-2

V. DISCUSSION

My results showed that improvements over the previously

proposed classification models are possible and that adding

dropout and starting from a pre-trained model are both good

ideas to try to achieve higher classification accuracy.

Therefore, I consider my experiment to have had a successful

outcome. Due to the fact that the Fruit-360 dataset was created

starting from frames of videos of objects spinning around a

specific axis, I think further investigation should be done to

see if these classifiers and the models proposed by Mureșan,

H., & Oltean, M. (2018) can actually generalize to any kind of

photo of a single piece of fruit or vegetable, regardless of the

rotation axis.

A. Privacy Aspect

Since the dataset is composed of pictures of inanimate objects

and at no point users of future applications are supposed to be

asked about their personal data related to the dataset itself, I

don’t see how my project might raise concerns about privacy

on its own. If the fruit recognition classifier is combined with

a face recognition model or another kind of personal

identification system, it could be possible for a third party to

collect information about the habits of their customer and

privacy concerns may assume relevancy.

REFERENCES

• Mureșan, H., & Oltean, M. (2018). Fruit recognition from images

using deep learning.

• Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning.

MIT press.

• Glorot, X., Bordes, A., & Bengio, Y. (2011, June). Deep sparse

rectifier neural networks. In Proceedings of the fourteenth

international conference on artificial intelligence and statistics (pp.

315-323).

• Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &

Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural

networks from overfitting. The journal of machine learning
research, 15(1), 1929-1958.

Table 3: Histories of Loss and Accuracy on the Training and

Validation Set (Errata Corrige: in the legends of the charts I

mistakenly wrote “test” instead of “validation”)

